Journal of Computational Physié§1,354-375 (2000) ®
]
doi:10.1006/jcph.2000.6515, available online at http://www.idealibrary.col DE &l.

Numerical Simulation of the Homogeneous
Equilibrium Model for Two-Phase Flows

S. Clerc

CEA-Saclay, Commissariatl'Energie Atomique, Bat. 470, 91191 Gif-sur-Yvette, France
E-mail: Sebastien.Clerc@cea.fr

Received April 12, 1999; revised March 13, 2000

Homogeneous equilibrium two-phase flows are characterized by important vari-
ations of the local Mach number. Indeed, the sound speed can be several orders of
magnitude higher in the liquid phase than in the two-phase mixture. For the sim-
ulation of such flows, a numerical method which can handle accurately any Mach
number is thus necessary. In this paper, we investigate the applicability of precondi-
tioned finite volume schemes for these problems. Specifically, we use Roe’s scheme
with Turkel’s preconditioning, in a time-consistent formulation which allows tran-
sient computations. We introduce an original extension of Roe’s scheme to fluids
with arbitrary equations of state. We establish some stability results for the method.
Numerical results are given for a two-phase bump channel flow in subsonic and
transonic regimes. @ 2000 Academic Press

Key Words:two-phase flows; finite volume schemes; low Mach number flows;
preconditioning.

1. INTRODUCTION

Incompressible flows, differentregimes are determined by the Mach nivhihen the
Mach number becomes low, the compressible equations are stiff. One can thus expect ¢
of accuracy or at least of efficiency when trying to solve the compressible equations in
low Mach regime. For this reason, it is often advisable to use specific models which rem
the stiffness from the equations. These models are derived by expanding the equatiol
terms of a reference Mach number, considered as a small parameter.

Generally, the relative pressure variations in alow Mach number flow are ofOrdéf),
and the acoustic waves can be neglected. If the relative density variations are small, the r
of the expansion is the incompressible (or, rather, constant density) model; see e.g., [1

On the other hand, if large variations of the density are enforced by the boundary cor
tions, the assumption of a constant density is not valid. This situation occurs, for instance
natural convection when the temperature discrepancy becomes large. A specific “low M
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number” model, obtained by filtering out the acoustic waves, can be used in this case;
[8, 19, 21]. In this model, the relative pressure variations are still of d@i@1?), but the
relative density variations can now be of orde¢l).

Finally, computing the propagation of acoustic waves in a low Mach number flow requit
a model withO(M) pressure variations; see [12, 18].

These approaches assume that the Mach number is uniformly low in time and sp
There are however situations when the Mach number is low only in a limited region of t
space-time domain. The initial and/or boundary conditions can lead to large variation:
the Mach number: consider for instance the case of a supersonic jet in a fluid at rest.
geometry can also be responsible for variations of the Mach number, as in a nozzle wi
large variation of the section. Finally, variations of the Mach number can be caused by
underlying physics: acceleration of a flame and phase change phenomena. In these
it is impossible to define a reference Mach number and thus to expand the equations
respect to this value: compressible equations, no matter how stiff, must be used.

Most numerical methods designed for compressible flows are unable to deal with
stiffness of the equations in the low Mach regime. Indeed, although the formal order
accuracy is not changed, the magnitude of the approximation error grows linearlywith 1
Roughly speaking, the numerical solutions on reasonable meshes become meaningle
soon adM < 0.1. This phenomenon was recognized by Volpe [34] among others, analyz
heuristically by Turkel [29], and more rigorously by Guillard and Viozat [10] on regula
meshes.

However, preconditioned compressible (PC) solvers [3, 5, 10, 29, 30] are able to deal \
the stiffness of the equations in the low Mach regime. Comparisons with incompressible
low Mach solvers [20, 33] show the excellent quality of the numerical results for flows wi
a uniformly low Mach number. In other words, when a specific incompressible or low Ma
model can be used, a comparable solution can be found with a PC solver. The choice bet
the first and the second group of methods is therefore a matter of taste: incompres:
and low Mach solvers should naturally be more efficient in terms of computational tin
but finite volume PC solvers have interesting properties: exact conservation, equal s
interpolation, absence of a user-defined parameter, and unstructured grid capability.

Still, the real advantage of the preconditioned compressible solvers is their ability
simulate flows that do not meet the uniform low Mach number assumption. The m:
purpose of the present paper is to demonstrate this ability, in the context of equilibri
two-phase flows.

Historically, the first PC solvers developed by Turkel [28] were restricted to steady-st.
computations. This fact has somewhat limited the interest of the CFD community in th
solvers. It thus seems important to note that time-accurate PC solvers do exist and are
to simulate accurately unsteady flows. Explicit PC solvers can be made time-accurate
using a dual time-stepping algorithm (see [2, 31]), but the most natural and efficient v
to restore time-accuracy is to use implicit time-stepping; see [10, 5]. We will develop tt
point and illustrate it by numerical examples.

Inthe time-consistent approach, preconditioning only affects the artificial viscosity mat
of upwind schemes. In this paper, we will study the sub-class of preconditioners which
be symmetrized along with the quasi-linear equations. For this class of precondition
we show that the preconditioned viscosity matrix of the upwind scheme is a well-defin
positive semi-definite matrix. As a corollary, we prove that the implicit scheme is lineat
stable on arbitrary grids.
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Recently, Bijl and Wesseling [1] introduced a pressure-based numerical method on s
gered grids which can be used for variable Mach number flows. This method seems t
a promising alternative to PC solvers. The use of staggered grids and the correction
makes the implementation somewhat more difficult than upwind PC solvers. On the ot
hand, the pressure correction scheme becomes an incompressible solvit wiErvhich
is not the case with the PC approach.

Let us now briefly give the outline of the paper. In Section 2, we present the homogene
equilibrium two-phase flow model, with a particular emphasis on the variations of the soL
speed.

In Section 3, we introduce the time-consistent PC finite volume scheme and we estak
some properties of the scheme. Our preconditioned numerical flux is based on Roe’s sch
We detail our extension of Roe’s scheme for the equilibrium equation of state. Details
the preconditioning strategy are given in Section 4.

Section 5 deals with numerical results. To illustrate the improvement brought about by
preconditioner, we compute the evolution of a point-wise disturbance in a subsonic unifc
flow. Then, we compute an equilibrium two-phase flow in a simple “bump channel” geol
etry. We present steady-state subsonic and transonic solutions and an unsteady compu
with variable boundary conditions.

Finally, we draw some conclusions and comments in Section 6.

2. THE HOMOGENEOUS EQUILIBRIUM MODEL FOR TWO-PHASE FLOWS

2.1. Introduction

In this section, we briefly introduce the homogeneous equilibrium model (HEM) fc
two-phase flows. For further details, we refer the interested reader to the classical arti
of Stewart and Wendroff [26, Sect. 4.3] and Menikoff and Plohr [16, Sect. V]. In spite
its simplicity, this model has often been used for the simulation of heat exchangers (
e.g., [9, 22, 27]) and for the analysis of critical two-phase flows in variable section du
(see [24] and the references therein). It is particularly well-adapted to the simulation
dispersed bubbly flow.

The shortcomings of this model are well known: it cannot reproduce strong kinetic
thermodynamic non-equilibrium effects such as occur, for instance, in annular flows or
flows with droplets. When non-equilibrium effects are small, they can be accounted
by correction terms (drift flux velocity, subcooled boiling models). When they are mo|
important, additional equations are needed for an accurate prediction. To account for kin
non-equilibrium effects, one has to introduce a balance equation for the momentum of e
phase. This leads to the so-called two-fluid models, which are more complex to analyze
simulate than the HEM. Thermodynamic non-equilibrium, on the other hand, is relative
easierto handle, since it does not affect directly the dynamics of the flow. A balance equa
for the mass of one of the phase can be added to the mixture mass conservation equi:
with appropriate mass transfer source terms for phase change.

This work however is restricted to the homogeneous equilibrium model. Our reason
choosing this simpler model is to underline one specific aspect of two-phase flows, nan
the large variations of the sound speed. This feature exists in other more sophistic:
models, in which additional modeling and numerical problems arise. Much effort has be
spent so far on the simulation of flows in which both phases are always present, al
at very small concentrations. Paradoxically, it turns out that the transition between p
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liquid and two-phase flows is more difficult to compute, because of the brutal change
compressibility.

A different and perhaps more difficult problem occurs at the transition between pt
vapor and two-phase mixture: the equation of state exhibits a non-convex behavior wi
can yield non-unique solutions (see [13, 16]). In this case, the use of the HEM is theref
questionable. This phenomenon is however outside the scope of this paper.

2.2. Equations

In the homogeneous equilibrium model of liquid/vapor flows, we assume that the pha
are in kinematic and thermodynamic equilibrium. The phases share the same pres
temperature, and velocity. Therefore, the evolution of the mixture can be described
Euler equations for a single fluid

dp + div(pu) = 0, Q)
dpu+div(pu®u) +Vp =0, 2
opE +div(puH) = 0. 3

Here E = e+ |u|?/2 denotes the total energy aktl=h + |u|?/2 the total enthalpy of the
mixture. To close the system, the equation of state links the prepdorthe conservative
thermodynamic variablgsandpe. The pressure law must be such that the partial derivative
x andx with respect tqp andpe satisfy

kh+x > 0.
The sound speedof the fluid is the square root of this quantity.

2.3. Equation of State

The equilibrium equation of state is more conveniently expressed as a function wh
gives the density of the mixture in terms of the pressurp and the enthalphy of the
mixture h. Suppose we know the density of each phase as a function of the pressude
enthalpyh: p,(p, h) for the liquid andp, (p, h) for the vapor. Moreover, the values of the
enthalpy of each phase at saturation are given as functions of the prég8igp:for the
liquid, h$?( p) for the vapor. We first define the qualityof the mixture as

h — hsat

X= ———— .
sat sat
hv - hl

If x <0, then the density of the fluid is that of the liqujg= p,(p, h). Similarly, if x > 1,
then the density is that of the vapar= po,(p, h). In the two-phase domain, i.e., when
0<x <1, the density is given by

1 1 1
> =Xp§at+(l_ X)Eat’

where the density at saturation of ph&sgatisfies, for continuity,

P2(p) = p (P, hP(P)).

In practice, the functiongx(p, h) and h§®(p) are given as bi-cubic and cubic splines
with tabulated values. The partial derivatives of the equation of state can be computet
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FIG. 1. Equilibrium equation of state for wates,as a function ofp andh. The derivatives of the equation
are discontinuous along the saturation line which separates the liquid (rear) from the two-phase domain (fr
The discontinuity is stronger for lower values of the pressure.

differentiating the local interpolation function. In the framework of the conservative Euls
equations, itis useful to exprepss a function of the thermodynamic conservative variable
p andpe: this can be done using Newton’s method.

The main characteristic of the equilibrium equation of state is the presence of a “kir
(discontinuity in the derivatives) along the saturation curve which separates the sin
phase and the two-phase domains. This fact is clearly visible in Fig. 1, which shows
equilibrium equation of state for water. This kink is responsible for the large variation
the sound speed. For instance, the sound speed in the liquid at saturation under a pre
of 5 Mpa is 1080 ms™1, and 34 m s~! in the mixture.

3. FINITE VOLUME SCHEME AND NUMERICAL FLUX

3.1. Finite Volume Discretization

The Euler equations take the form of a system of conservation laws,

We want to discretize this system by a finite volume method. Let us consider a trian
lation of the computational domain by polygonal cells. For a Kelive denote byK | its
volume,dK its boundary, andv'(K) the set of neighboring cells. ¥ € A/(K), the common
interface is thu®K N a3 J: its surface is0K N 9J| andng ; denotes the unit normal to the
interface, oriented froriK to J. Finally, we denote byt the step of the time discretization.

The finite volume method for the solution of the system of conservation laws (4) tak
the form

|§T|( RE—UR)+ DD 19K Nad|Pky =0. (5)
JeN(K)

Here,UR denotes the average value of the solution in thel€ekt timenst.
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To completely determine the numerical method, we have to specify the expression of
numerical flux®g; in terms of the cell average values. As usual, first order schem
are obtained ifdy ; depends on the two neighboring cell valugg andU;: &k ;=
®(ng 3, Uk, Uy). Higher order schemes can be constructed on this baklg iind U,
are replaced by appropriate interpolations.

Finally, the cell values can be taken either at timie(explicit time-stepping) ofn+ 1)t
(implicittime-stepping). Inthe latter case, an approximate or exact Jacobian of the numer
flux is needed. This point is addressed in more detail in [6].

3.2. Roe’s Scheme

The starting point of our numerical scheme is Roe’s flux [23],
1 1
®(n, UL, Ur) = E(F(UL) +F(UR)) -n— §|An|(UR —Up). (6)

HereA, =An(UL, UR) is the so-called Roe matrix for the system. From now on, we wil
drop the subscript for brevity, whenever possible. The numerical viscosity matrix is define
by |A| =37 1Al ® i, if A =3"; Airi ® | is the eigen-decomposition &f.

For completeness, we give a compact and efficient algorithm to compute Roe’s numel
flux. We first introduce average values for the density, velocity, total enthalpy, and spee:
sound. For the first three, we use Roe’s definition,

~ - J/pLuL + /prRUR ~  &/pLHL + /prHR
P = /PLPR, u= , H= . (7)
VPL + /PR JPL + /PR
The average value for the speed of soandll be discussed later. Finally, Ié = - n
be the normal component of the velocity. The numerical flux is computed with the followir
algorithm:

DEFINITION 3.1 (Algorithm 1).

e If |Ty| > c, the scheme is totally upwind:
—iflin >0, ®=F(U.),
—if lin <0, ®=F(UpR).

e In the subsonic casé,| < c:
—ifln >0, & =F(U.)+ (ln —c)(AU)~
—if i, <0, ® = F(UR) — (n +c)(AU)™.

It remains to give the definition faAU )™,

- 1
2c? ~
H £+ Gnc

where the notationd] stands for the jump between the left and right values of the quantit
o, i.e.,OlR — L.
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3.3. Choice of the Average Sound Velocity

In the case of a perfect gas, Roe suggested the following average vatje for
= (y—D[H=10-0/2).

This choice leads to the following property:
ProOPERTY3.1. If F(U ) = F(UR), then® = F(U_) = F(UR).

An immediate corollary of this property is the fact that stationary shocks (even no
entropic ones) are preserved by Roe’s flux. For the proof of these statements, we refe
[23].

This property was extended to general equations of state by [32], among others. T
choice for the average sound of speed is

2 =k[H—0-0/2]+ x,
wherex andy are averaged values for the partial derivatives of the pressure, satisfying

[nl = «Lrel + xLrl-

In this context, several authors have proposed different ways to construct the average ve
« and x; see for instance [17, 27, 32]. Unfortunately, no decisive physical or numeric
argument can be advanced in favor of any of these methods.

Another problem is posed by the presence of discontinuous pressure derivatives in
HEM. Indeed, any attempt to compute average values of discontinuous quantities beca
hazardous. Specifically, the average values could yield a non-positive valeg fainich
would doom the numerical flux.

Instead we propose to use the algorithm of Definition 3.1 and define the average vz
c directly without using« and x. Such choices generally do not satisfy Property 3.1
This property is generally thought to be a crucial aspect of Roe’s numerical flux. Ho
ever, our experience shows that infringing upon this property by choosing other definitic
for c can improve the robustness and the simplicity of the scheme without serious |
pact on the precision. This aspect will be the subject of a coming paper. In the pres
work, our main interest is in avoiding the determination of the average coefficients
andy.

If the left and right states are both in the liquid or in the mixture domain, we use tt
average value

c = max(C, Cr).
If not, we use the choice
C = min(c., Cr).

Experience shows that this choice leads to a robust and efficient scheme in subsonic
transonic regimes.
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4. PRECONDITIONING FOR LOW MACH NUMBER FLOWS

4.1. Time-Consistent vs Pseudo-Transient Preconditioning

At this point, one can introduce two modifications in the context of low Mach numb
flows.
First, one can replace the time integration (5) by a preconditioned formulation,

[LSPS

5 PHUR™ —UR) + D 19K NaJ|dky =0, (8)

JeN(K)

whereP is a properly chosen non-singular matrix. This matrix may, or may not, depel
on the local value in the cellk. It is clear that formulation (8) is not time-consistent. It
can thus be used only for steady-state computations, to improve either the convergen
explicit schemes, or the conditioning of the Jacobian in implicit schemes.

On the other hand, the numerical flux itself can be preconditioned, replacing (6) by

1
®p(n, UL, UR) = *(F(UL)+F(UR)) n—*P HPAL (Ur —Uy). 9

Here the preconditioneP may depend otJg andU_, or rather on an average value.
This formulation is meant to improve the spatial discretization of the numerical methc
Numerical examples of this improvement can be found in [5, 10, 30].

The preconditioned flux (9) can be used either in the original (5) or preconditioned |
formulation. In the latter case, two different preconditioners may be used. As in [10], \
advocate the use of the original time-consistent formulation (5), with the modified numeri
flux (9). This will enable us to simulate unsteady flows (see Section 5).

We can write this implicit scheme with the usual “delta” form. By = U”’L1 Uy
be the time increment dfx . We have to solve

K
| |5UK+ > 19K N9 J|(dy, P - 8Uk + du,Pp - 8U,)
JeN(K)

= > 19KN3J|dp (UL UD). (10)
JeN(K)

Equation (10) gives the time incremetd as the result of a sparse, non-symmetric linea
system. This increment is used to update the solution. We followed the common prac
with Roe-type schemes of replacing the partial derivatives of the numerical fldx and
du, ®p by simpler approximations.

More details on the implicit formulation can be found in [6].

4.2. Choice of the Preconditioner

Equation (9) defines a new family of fluxes, depending on the choice of the preconditio
P. Note that ifP is a scalar matrix, we recover the original flux (6). If nét;, andP
do not commute, for almost every spatial directimnThus, the viscosity matrix of the
preconditioned scheme is modifigRt-|PA,| # |An|.

It is worthwhile noting that the preconditioned numerical flux does not belong to tt
family of approximate Riemann solvers, in the sense that it does not approximate Godun
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flux up to second order ifflUg — U_||. In other words, it is not linearly equivalent to
Godunov’s flux. The one-dimensional Riemann problem has often been regarded a:
essential building block of finite volume schemes. Recently however, new fluxes we
introduced, which are based on different ideas: cf. the AUSM [14] or the CUSP [1
schemes for instance.

In the 1-D case, the Riemann problem is a very relevant building block: as expected,
approximate Riemann solvers give very good results, even at low Mach number. This is
the case however for subsonic flows in higher dimensions. The reason is that shear wav
higher dimensions are incorrectly analyzed as a sum of a shear wave and an acoustic wa
the approximate Riemann solvers. The effect of these spurious acoustic waves is dran
at low Mach number. Typically, they result in pressure and Mach number discontinuiti
aligned with the grid lines on a regular mesh. This phenomenon will be illustrated by
numerical example in Section 5.

Looking at the orders of magnitude of the coefficients in the Jacobian nfatiixrkel
[28] was able to derive a heuristic condition on the coefficients of the viscosity matrix
make the scheme accurate at low Mach numbers. According to Turkel, the viscosity mat
expressed in primitive variablép, u, S), should have the following orders of magnitude,

O(1/M?) 0O(@/M?) 0
0(1) 0(1) 0
0 0 o)

As a result, the trace of the viscosity matrix should be of oi@¢t/M?). Since we
expect this matrix to have non-negative real eigenvalues, it means that its spectral radil
also of orderO(1/M?). A tedious computation shows that this is indeed true for Turkel*
diagonal preconditioner and for the van Leer-Lee—Roe preconditioner; see [4, Chap.
Thus, the maximum explicit time-step should be of or@iM?), instead of the expected
O(M) given by the CFL condition. In other words, no explicit scheme, stable under the CI
condition, can give correct results at low Mach numbers. This is consistent with the f
that time-accurate incompressible solvers always involve an implicit step, since the pro
tion operator on the space of divergence-free vectors involves an elliptic problem.

The time-accurate preconditioned solver (5)—(9) must therefore be used with an impl
time-stepping in the low Mach number regime. To enhance the efficiency of the solv
one could think of using a semi-implicit discretization, leaving the treatment of convecti
waves explicit. Also, the discretization could be switched to a purely explicit one when t
Mach number goes to one. As far as we know, these possibilities have not yet been expl
in the framework of PC solvers.

4.3. Symmetric Preconditioning

In this section, we restrict ourselves to symmetrizable systems of hyperbolic equatic
This framework is well suited for the study of hyperbolic system&ind > 1. As is well
known, this is not a serious restriction since all systems endowed with a mathemat
entropy are symmetrizable (see, e.g., [25]).

We assume that the Roe mathixsatisfies the following property: there exists a symmetric
positive definite matribs such thaSA,, is symmetric for alh. This property automatically
implies thatA has a complete set of real eigenvalues and eigenvectors. The usual Roe m:
for the Euler equations satisfies this property (see below).



SIMULATION OF EQUILIBRIUM TWO-PHASE FLOWS 363

We will require that the preconditiond? is such thatSP is also symmetric positive
definite. Although this property might not be valid for all existing preconditioners, it is tru
for two important examples: Turkel's diagonal preconditioner and the van Leer—Lee—F
preconditioner for the Euler equations.

The following lemma proves that the viscosity matrix of the preconditioned scher
P~1|PA| (see Subsection 3.2) is well defined:

LEmMMA 4.1. PA has a complete set of real eigenvalues and eigenvectors.

Proof. LetR be anon-singular matrix suchtfRfR = S. We then seh = RAR*and
P=RPR™. SinceA = R-T(SARL, A is symmetric. SimilarlyP is symmetric positive
definite. SincePA = RPAR, it is sufficient to show thaPA has a complete set of real
eigenvectors.

Next, letQ be a non-singular matrix such thaf Q = P. We have

PA=QT(QAQNHQ .
Thus, PA is similar to a symmetric matrix, and thus has a complete set of real eige
vectors. =

Finally, we show that the viscosity matr@® = P~1|PA| will indeed lead to a dissipative
numerical scheme:

PROPERTY4.1. SO is symmetric positive semi-definite.

Proof. Since we hav&® = RTOR with ® = P~1|PA|, it suffices to show tha® is
also symmetric positive semi-definite. An easy computation yields

© =Q ' QAQTIQT,
which makes the proof obvious.s
This result is important because it shows that the implicit scheme is linearly stable:
ProPOsSITION4.1. The implicit scheme is linearly stable for ali > 0.

For completeness, we include a proof of this proposition in the Appendix.

The preconditioned flux has another interesting property which can be related to the I
extremum diminishing property for scalar equations or the total variation diminishing prc
erty inthe 1-D case. L&&P% = %(A +©®) andA"? = %(A — ©). For the unpreconditioned
flux, AP°S = A* has only non-negative eigenvalues, &9 = A~ has only non-positive
eigenvalues. This is no longer true for the preconditioned flux, but the following propel
holds:

PROPERTY4.2. SAP°Sis symmetric positive semi-definite aBA"®%is symmetric neg-
ative semi-definite.

4.4. Application to the Euler Equations

Symmetrizing the Jacobian matrix is not only useful for showing theoretical results,
also gives a nice formulation of the preconditioned scheme and makes the compute
of the eigen-decomposition easier. As an illustration, we give the expressions of two w
known preconditioners, namely Turkel's diagonal preconditioner and the van Leer—Lee—|
(VLLR) preconditioner.
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For the Euler equations, a possible symmetrizing matrix is given by

x+5uP? —ku o« (1t o -1

R= —cu cd o0, R_lz—z cl —u
C

—k(H —ul®) —«xu" « H cu™ —1juf?

We have denoted blyand0 the identity matrix and the null vector &. The symmetrized
Jacobiam, = RAR 1 takes the form

u-n cn' 0
A= ¢cn (u-ml O
0 o’ u-n

We can see that the last variable (related to the entropy) is totally uncoupled (at least linez
from the others and will not be affected by preconditioning.
With this change of variables, we can define the preconditiBrasR~PR.

4.4.1. Computation of the viscosity matrixThe viscosity matrix°~%|PA| can still be

written as a sum of rank-one matrices (cf. Subsection 3.2),

PYPAl = [Alfi ® ;. (11)
i

However, this decomposition is no longer an eigen-decomposition. AlthBAgtan be
diagonalized directly, itis often easier to work with the symmetric fa@@AQT . The eigen-
values of this matrix give thi of the decomposition (11). Let denote the corresponding
eigenvectors. Since

QAQT =) Jivi®V,

we have
A= Zii Qe wQ™,
and
A=) LRTQV)®MQTR).
Therefore

fi = R_lQ_lVi, Ti =V Q_TR.

Since the preconditioner does not change the signs of;then efficient algorithm like
Algorithm 1 (see Definition 3.1) can still be used.
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4.4.2. Turkel's preconditioner. Turkel's diagonal preconditioner is given in symmetric
form as

P = diagg?1, 1), (12)

whereg is of the order of the Mach number. Obviously, this preconditioner can be expres:
under the fornP = QTQ, with Q = diag(, I, 1).

The paramete$ can be set to a constant reference value of the Mach number. In our ¢
however, it is crucial to use a local value to accommodate the large variations of the M
number,

_
p="
where(i andc are the interface average values (see Subsection 3.2). Other choiges ft
have been investigated recently by Darmofal and Siu [7], to enhance the stability of
scheme near stagnation points, where the local Mach number can reach 0.

We now give the equivalent of Algorithm 1 for Turkel’s preconditioner. In the subson

case|lin| < ¢, we set

v=>1-BdUn/2, y=V1v2+pB22, at=y+v.
DEFINITION 4.1 (Algorithm 2).

e If |Tih| > c, the scheme is totally upwind:
—if 0p > 0, ® = F(UD),
—if 0p < 0, ® = F(UR).

e In the subsonic cadé,| < c:
—if Up > 0, ® = F(UL) + (Uh — a™)(AU)™
—if 0, <0, ® = F(UR) — (0h, + a7)(AU)T,

with the following definition for(AU)*,

1
:|: ~ 4
(AU)s = LPLEDPTU] [y
20ty ~
H + fipat

Note that wheng =1, we havey =at=a~ =c, and the original Roe scheme
(Algorithm 1) is recovered.

4.4.3. The VLLR PreconditionerThe van Leer-Lee—Roe preconditioner for 2-D sub:-
sonic flow can be expressed Rs= QT Q, whereQ is the product of an upper triangular
and a rotation matrix,

M -1 0 0N /1 0 0

0 1 0 0 0 uxy/gq uy/q O
=10 o vicwmz of |o —uy/q Ug/q O

0 0 0 1/ \o o0 0

In the original VLLR preconditioner, the second coefficient on the diagor@liefactually
different: the difference is irrelevant in our case since it does not change the artific



366 S. CLERC

viscosityP~|PA|. In 3-D, the corresponding rotation matrix is not uniquely defined, and
choice has to be made.
The preconditioned Jacobian takes the form

un(M2-1) 0 u,v/1-M2 0

ko™ - 0 Un 0 0
T luv1I-M2 0 u,(1-M%»H o |’
0 0 0 Un

with un = uxny 4+ uyny andu, = —uyny + uyny. This matrix has another uncoupled vari-
able, which is related to the transport of the total enthalpy along streamlines at steady <
(see [30]).

We now give the equivalent of Algorithm 1 for this preconditioner. In the subsonic cas
|Un| < c, we set

v=0,vV1—- M2 Yy =/v2+ U2

We denote byi" = (—uy, uy) the vector obtained by-a/2 rotation ofu. We then introduce
6 = Atan(u,/v)/2. Then the preconditioned scheme is given by:

DEFINITION 4.2 (Algorithm 3).

e If |Tih] > c, the scheme is totally upwind:
—if p > 0, ® = F(UL),
—if Up < 0, ® = F(UR).

e In the subsonic cagéi,| < c:
—if lip, > 0, ® = F(UL) — y+/1— M2(AU)~
—if 0, <0,® = F(Ug) — yv/1— M2(AU)T,

with the following definitions for AU )*,

cosd
1 . ar - . o
(AU = e (cos@[ pl + smem[pu]> cost 0 + sinf = |,
cosv H
and
sind
_ 1 . ar o -
(AU)” = W (smé)[p] - cowﬁ[pu]) sing 0 — cos@ﬁ
singH

Our experience [4] shows that the numerical results for the two preconditioners are q
similar, although the VLLR preconditioner gives a better prediction of the total enthalg
On the other hand, Turkel's diagonal preconditioner is easier to implement and has a nai
3-D extension. In the present work, we have only used Turkel’s preconditioner.

5. NUMERICAL RESULTS

In this section, we show some numerical results obtained with the time-consistent R
Turkel scheme. In all cases, a linearized implicit time-stepping has been used. We
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TABLE |
Initial Data for the Subsonic Acoustic Wave
At point (3, %) Elsewhere
) 1.1 1.
u 0.1
v 0.01

compute the evolution of a point-wise perturbation in a uniform subsonic flow. The aim
this test case is to show the effect of preconditioning the numerical flux. Since the proper
of the fluid are not important in this test case, we use a simpler barotropic pressure lav

We then turn to the two-phase flow simulations with the homogeneous equilibrium moc
We perform a steady-state and an unsteady computation in a “bump channel” geomet

5.1. Acoustic Wave

The first example is the computation of a circular acoustic wave created by a pointw
perturbation in a uniform flow. For this test case, an isentropic model suffices,

o p +div(pu) =0
dpu+div(pu® u) + Vp(p) =0.

We takep = %pz, so that the resulting system is formally equivalent to the Saint—\Vena
equations of shallow water.

The initial data for this test case are a constant subsonic $fate (.1) with a point-wise
disturbance (see Table I). The exact solution is a circular acoustic wave expanding in t
and slowly advected with the flow. This simple test case aims at revealing the grid sensiti
of the scheme.

We perform five implicit time steps witht /§x = 1. A regular 60x 60 mesh is used.
The numerical results for Roe’s scheme and Turkel’s preconditioner are shown in Figs. :

FIG. 2. Acoustic wave test case: density field. Notice the regularity of the wave front computed by the Rc
Turkel scheme. The speed of propagation of the wave front is not affected by preconditioning, but the ampli
of the variations diminishes.
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FIG. 3. Acoustic wave test case: Mach number field. Notice the discontinuity aligned witk ¢iniel line
with Roe’s scheme. The Roe—Turkel solution is smoother.

For each scheme, we present the density field and the Mach nivinbeu|/c. The solution
computed by the Roe scheme presents a squarish wave front with discontinuities alig
with the grid lines. The Mach number field shows an important discontinuity which
aligned with thex grid line originating from the initial perturbation.

The solution given by the preconditioned scheme is smoother and less sensitive to
mesh geometry. The extension of the wave front is correct, which shows that the tir
accuracy is not destroyed by preconditioning. The amplitude of the density variations
larger for the Roe than for the Roe—Turkel scheme, which shows that more numeri
diffusion is added on the first equation. On the Mach number field however, the numeri
diffusion of the preconditioned scheme is smaller. Above all, the numerical diffusion
almost isotropic, which is not the case for the unpreconditioned scheme.

5.2. Two-Phase Flow in a Channel with Bump

This section deals with the simulation of the homogeneous equilibrium model (1) intr
duced in the first section. We consider a channel with a 20% sinusoidal bump (Fig. 4).
boundary conditions are specified in Table Il. At the inflow, the fluid is liquid but very clos
to the saturation. As the pressure drops with the restriction of the section, a small conc
tration of vapor appears. The Mach number changes dramatically after the transition. In
first test case, the inlet velocity is such that the flow remains completely subsonic, altho
with important compressibility effects. In the second test case, however, the Mach numr
reaches one at the throat and a shock appears behind the bump.

The existence of shocks in flows with area restriction is particularly important for dime
sioning pipes, since they determine the maximum flow rate that can be reached. Altho

FIG. 4. Channel with bump: 26 80 structured mesh.
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TABLE Il
Boundary Conditions for the Two-Phase Bump
Channel Flow

Inflow Qutflow
h 1154.2 kd/kg
u 10.m-st? p 50. 1G Pa
0.m-s?

stationary shocks are rarely found in common liquid flows, they easily occur after a tv
phase transition. This problem has been intensely studied over the years, principally \
one-dimensional analyses (see, e.g., [24]. It is our hope that multidimensional simulati
will provide useful additional information for the design of valves and pipes subject to phe
transition.

5.3. Subsonic Solution

This computation is performed with a constant time step of 1Gonvergence is reached
in less than 40 time steps (see Fig. 7). To monitor the convergence, we study the decr
of the norm of the residual, i.e., the right hand side in Eq. (10).

The pressure profile is displayed in Fig. 5. As expected, no discontinuity can be dete
across the phase transition lines. However, the influence of the vapor is clearly visible or
Mach number profile (Fig. 6, right), which shows sharp discontinuities. For both profile
the symmetry is quite satisfactory.

We also display the total enthalpy along the walls (Fig. 7) which should be constant
this irrotational flow, according to Bernoulli’'s theorem. The observed variation is typic
of a first order scheme. We underline the fact that no jump in the enthalpy can be obse
across the transition lines.

5.4. Transonic Flow

In this test case, the inlet velocity is higher (see Table IIl). The flow reaches Mach 1
the throat and a stationary shock forms behind the bump. The fluid then goes back tc
liquid state and the Mach number drops back to a small value.

For this test case, one must use smaller time steps because of the presence of the stat
shock. The time-step is first set to 502 during 6 iterations, then reset to 302 as the
shock starts forming. After 100 iterations, the residual has lost 4 orders of magnitude.
solutionis displayedin Fig. 8 (pressure field) and Fig. 9 (Mach number field). Due tothe la
variations of the Mach number across the phase transition line, the shock is hardly visibl
is more easily seen on the pressure field. A better resolution of the shock would be obta
with a finer mesh or a higher order discretization.

FIG.5. Channel with bump. Left, pressure (min49.54.- 10° Pa, max= 50.11- 1(° Pa, 20 isolines). Right,
vapor concentration (mie: 0, max= 1.66- 103, 20 isolines).



370 S. CLERC

TABLE IlI
Boundary Conditions for the Two-Phase
Transonic Flow

Inflow Outflow
h 1154. kd/kg
u 24. m-st p 50.1C Pa
v 0.m-s?

FIG. 6. Channel with bump. Logarithm of the Mach number (rgirv.668- 10-3, max= 0.4136, 80 isolines
in logarithmic scale). Note the sharp discontinuity along the phase transition line.

Residuzl
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1e-004
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FIG. 7. Channel with bump. Left, history of the residuallid norm. Right, total enthalpy on the walls.

FIG.8. Transonic flow in a channel with bump: pressure field (si89.908- 1(° Pa, max= 50.948- 1¢° Pa,
10 isolines).

FIG. 9. Transonic flow in a channel with bump: Mach number field (rainl.518- 102, max = 1.0903,
10 isolines).
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FIG. 10. Loss of pressure simulation. Cells occupied by the liquid (white) or the two-phase mixture (blacl
From left to right and top to bottom: time steps 5, 10, 15, 20, 25, 30, and 3510

5.5. Unsteady Flow

The time-consistent preconditioned solver is particularly intersting for the simulation
unsteady flows. To illustrate this feature, we compute a flow with a varying outflow bound:z
condition. The imposed pressure at outflow drops linearly fpm50.4 - 10° Pa att =0
to p=49.4 .10 pa att =0.5 s. The inlet enthalpy and velocity are kept constant. Th
time-step is stilbt =5- 10~ s. We observe the evolution in time of the transition betwee
the liquid and the two-phase mixture (Fig. 10). We can see the growth of the two-ph:
patch which finally occupies the whole channel.

6. CONCLUSION

Two-phase flows are characterized by large variations of the Mach number, due to
different compressibility of the liquid and the two-phase mixture. We have shown tha
preconditioned finite volume scheme based on Roe’s numerical flux is able to simul
such flows, both for steady-state and unsteady applications. From the theoretical poil
view, the robustness of the solver can be linked to a generalization of the local extren
diminishing property which is satisfied by the class of preconditioned upwind solvers.

The numerical results obtained with this method for steady-state and unsteady probl
seem satisfactory, although we still lack analytical or numerical results to validate then

One could improve the efficiency by turning to a partially implicit scheme, in orde
to reduce the size of the Jacobian matrix. The spatial accuracy should be improvec
introducing either a MUSCL-type reconstruction or a discontinuous-Galerkin method.
unsteady problems, the use of a high order time-discretization would also be necessary.
question is currently under examination; our concern is to keep the method efficient, wt
is not so obvious for a fluid with a non-linear equation of state. In a recent study [6], we he
shown that spurious acoustic waves may occur in the vicinity of contact discontinuities
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perturb transient simulations. Note that this phenomenon is not specific to our solver
rather comes from the conservation form of the equations.

Finally, one would like to extend the numerical method to more general two-phase fl
models including kinematic and/or thermodynamic non-equilibrium effects. Whereas
laxing the thermodynamic equilibrium should not be a serious problem, a number of iss
must be addressed to simulate kinematic non-equilibrium models. First, one has to «
struct an upwind compressible solver for the system of equations considered. This isst
already quite a difficult one and is still an active area of research. Next, one should de
a preconditioner for the system. Here the major difficulty is to define the typical order
magnitude of the pressure fluctuations. In a homogeneous low speed flow, they are of
order of pu?, whereu is the reference velocity of the fluid. With a model including two
velocities and one pressure, the picture is not so clear. Finally, our numerical method re
on a coupled fully implicit formulation, which will be more difficult to handle in a model
with a large number of unknowns.

A. APPENDIX

Linear Stability of Implicit Finite Volume Schemes

In this appendix, we prove the linear stability of the implicit scheme, in the case of
symmetric system with constant coefficients,

U —i—ZA“BaU =0.

The maticesA*, « = 1,...d, are constant symmetric matrices. In the linear case, th
upwind flux can be written in the form

1 1
®(n, U, UR) = éAn(UL-i—UR)—é@n(UR—UL)- (13)

The proof applies to any numerical flux with a symmetric positive semi-definite viscosi
matrix® such tha®, = ©_,,. In particular, the preconditioned flux belongs to this category
For simplicity, we writedg ; = ®(Uk, Uj), Aks =An,,, andOy ; = O, ,. We denote

by U = (Uk )k e, the vector whose components are the discrete valuksinfeach cell.
The notationM will refer to the matrix of the discrete flux operator. Specifically, the
component of the vectokU corresponding to the cell reads

1
MU = 7 > 10K NaJI[AksUk +Uy) — OkyUy —U)].  (14)
JeN(K)

To simplify the analysis, we consider the case of periodic boundary conditions.
With the preceding notations, the implicit finite volume scheme takes the compact for

(Id + SEAMUM = UM
We finally introduce a discrete? scalar product,

U.V)=> KUk - k.
K

To prove the stability of the implicit scheme, we need to show that:
LEmMmMA A.1. For all vectorsi/,
(MU, U) = 0.
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Proof. We first computa MU, /) by taking the scalar product of each equality (14)
with |K| Uk, and summing over all cells,

(MU,U):Z Z 10K N 3J|Pk, - Uk.

K JeN(K)

In this sum, we split the centered and the upwind part. Let

1
E1=§Z > 19K N9JAKy(Uk +Uj) - Uk
K JeN(K)
and
1
Ez:gz > 19K N33Ok (Uk —Uy) - Uk.

K JeN(K)
We note that the term
> |8K08J|AKJ=/ A -nds
JeN(K) aK

vanishes in the case of constant coefficients.
We can now rewritde; as a sum over all edges of the triangulation,

1
Er=7 > [0KN3J|[AUs- Uk + AUk - Ual.
ZaKﬂE)J

SinceA is symmetric and\k ; = —A ;«, we haveE; = 0.
We perform a similar manipulation on the second term. We first re\iitas a sum over
all the interfaces of the triangulation,

1
E> = 5 Z 0K N3J|[Ok3(Uk —Uy) - Uk + O k(U —Uk) - Uyl. (15)
dKNaJ
Now since® is symmetric an® ; = Ok, we can rewriteE, as

1
=3 > 10K N3J|[O®Uk - Uk — 28Uk - Uy + OU; - Uy]
aKNaJ

1
=5 D 19KN331Ok;(Uk = Uy) - (Uk = Uy). (16)
aKNaJ

Thus,(MU, U) is a sum of non-negative terms, and the proof is compleke.
The stability of the implicit scheme follows from this inequality.
ProPOSITIONA.1. The implicit scheme is linearly stable for @l > 0.

Proof. We simply remark that
(un+l un+l) — (un un+l) — 5t (Mun+l un+l) < (un un+l).

Hence"+1, "1y < U™, U") by the Schwarz inequality. m
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